Lower-tail approximations for the probability of failure of three-dimensional fibrous composites with hexagonal geometry

Author:

Abstract

The chain-of-bundles model for the strength of unidirectional fibrous materials is extended to cover 3D situations wherein the parallel filaments are arranged laterally in a hexagonal array. Within each bundle, the strengths of the fibres vary statistically and share load according to a local load-sharing rule, a rule which describes how the loads of failed fibres are redistributed on to nearby surviving fibres. We consider two idealized versions of this rule, one geometrically motivated and the other more mechanically motivated. We extend earlier asymptotic techniques for the 2D planar problem to the present 3D case, and obtain various approximations for the probability distribution for material strength. The Weibull distribution again emerges as central to the results, but the calculation of its shape and scale parameters is greatly complicated by the large number of new failure configurations that may arise in the hexagonal array of fibres. Earlier 2D results connecting the Weibull shape parameter to the critical failure sequence size do not in general hold in 3D settings. The general character of the results, however, is the same as in the 2D setting, with 3D materials being stronger because of the reduced severity of the fibre overloads in the hexagonal array. Also, the two local load-sharing rules though quite different in character yield surprisingly similar numerical results.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference18 articles.

1. Diegert C. F. 1 9 8 0 Ph.D. thesis Cornell University Ithaca New York.

2. Greenfield M. R. 1981 M.Sc. thesis Cornell University Ithaca New York.

3. The Chain-of-Bundles Probability Model For the Strength of Fibrous Materials I: Analysis and Conjectures

4. The Chain-of-Bundles Probability Model for the Strength of Fibrous Materials II: A Numerical Study of Convergence

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3