Statistical Analysis of the Ultimate Strength of Filaments, Tows and Minicomposites

Author:

Lamon Jacques1,R’Mili Mohamed2

Affiliation:

1. LMPS-ENS, Université Paris-Saclay, 4, Avenue des Sciences, CS 30008, 91192 Gif-sur-Yvette, France

2. MATEIS, INSA-Lyon, 7 Avenue Jean Capelle, 69621 Villeurbanne, France

Abstract

The present paper investigates the failure of SiC and alumina-fiber-reinforced minicomposites in relation to the strength distributions of filaments, and the failure behavior of the reinforcing dry tows. The strength data are measured on single-filament, dry-tow and minicomposite specimens using tensile tests under commonly used test condition of strain-controlled loading. Pertinence of the normal distribution of strengths at different length scales is assessed using the construction of p-quantile diagrams, and the pertinence of the Weibull distribution was assessed by comparing to the normal distribution function. SiC and alumina minicomposites exhibited significantly different failure behaviors. Comparison with filament strength distributions and the behavior of the underlying tow in relation to the loading condition (stress- or strain-controlled conditions) allows for the interpretation of the results. The sensitivity of the results to loading conditions is highlighted. Various scenarios of minicomposite failure are discussed as alternatives to the stress concentration induced by clusters of broken fibers. It appears that the failure of alumina-fiber-reinforced minicomposites is stable and dictated by the highest-strength filaments, whereas the SiC-fiber-reinforced minicomposites exhibited premature failure that is attributed to the microstructural imperfections that induced overstressing by the fiber or fiber/matrix interactions.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3