III. Contributions to the mathematical theory of evolution

Author:

Abstract

(1.) If measurements be made of the same part or organ in several hundred or thousand specimens of the same type or family, and a curve be constructed of which the abscissa x represents the size of the organ and the ordinate y the number of specimens falling within a definite small range δx of organ, this curve may be termed a frequency-curve . The centre or origin for measurement of the organ may, if we please, be taken at the mean of all the specimens measured. In this case the frequency-curve may be looked upon as one in which the frequency—per thousand or per ten thousand, as the case may be—of a given small range of deviations from the mean, is plotted up to the mean of that range. Such frequency-curves play a large part in the mathematical theory of evolution, and have been dealt with by Mr. F. Galton, Professor Weldon, and others. In most cases, as in the case of errors of observation, they have a fairly definite symmetrical shape and one that approaches with a close degree of approximation to the well-known error or probability-curve. A frequency-curve, which, for practical purposes, can be represented by the error curve, will for the remainder of this paper be termed a normal curve . When a series of measurements gives rise to a normal curve, we may probably assume something approaching a stable condition; there is production and destruction impartially round the mean. In the case of certain biological, sociological, and economic measurements there is, however, a well-marked deviation from this normal shape, and it becomes important to determine the direction and amount of such deviation. The asymmetry may arise from the fact that the units grouped together in the measured material are not really homogeneous. It may happen that we have a mixture of 2, 3, . . . n homogeneous groups, each of which deviates about its own mean symmetrically and in a manner represented with sufficient accuracy by the normal curve. Thus an abnormal frequency-curve may be really built up of normal curves having parallel but not necessarily coincident axes and different parameters. Even where the material is really homogeneous, but gives an abnormal frequency-curve the amount and direction of the abnormality will be indicated if this frequency-curve can be split up into normal curves. The object of the present paper is to discuss the dissection of abnormal frequency-curves into normal curves. The equations for the dissection of a frequency-curve into n normal curves can be written down in the same manner as for the special case of n = 2 treated in this paper; they require us only to calculate higher moments. But the analytical difficulties, even for the case of n = 2, are so considerable, that it may be questioned whether the general theory could ever be applied in practice to any numerical case. There are reasons, indeed, why the resolution into two is of special importance. A family probably breaks up first into two species, rather than three or more, owing to the pressure at a given time of some particular form of natural selection; in attempting to procure an absolutely homogeneous material, we are less likely to have got a mixture of three or more heterogeneous groups than of two only. Lastly, even where the heterogeneity may be threefold or more, the dissection into two is likely to give us, at any rate, an approximation to the two chief groups. In the case of homogeneous material, with an abnormal frequency-curve, dissection into two normal curves will generally give us the amount and direction of the chief abnormality. So much, then, may be said of the value of the special case dealt with here.

Publisher

The Royal Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3