Immunofluorescence-guided segmentation of three-dimensional features in micro-computed tomography datasets of human lung tissue

Author:

Lawson Matthew J.1ORCID,Katsamenis Orestis L.2,Chatelet David1,Alzetani Aiman1ORCID,Larkin Oliver3ORCID,Haig Ian4,Lackie Peter1,Warner Jane1,Schneider Philipp35ORCID

Affiliation:

1. School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK

2. μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK

3. Bioengineering Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK

4. Nikon X-Tek Systems Ltd, Tring, UK

5. High-Performance Vision Systems, Center for Vision, Automation and Control, AIT Austrian Institute of Technology, Vienna, Austria

Abstract

Micro-computed tomography (µCT) provides non-destructive three-dimensional (3D) imaging of soft tissue microstructures. Specific features in µCT images can be identified using correlated two-dimensional (2D) histology images allowing manual segmentation. However, this is very time-consuming and requires specialist knowledge of the tissue and imaging modalities involved. Using a custom-designed µCT system optimized for imaging unstained formalin-fixed paraffin-embedded soft tissues, we imaged human lung tissue at isotropic voxel sizes less than 10 µm. Tissue sections were stained with haematoxylin and eosin or cytokeratin 18 in columnar airway epithelial cells using immunofluorescence (IF), as an exemplar of this workflow. Novel utilization of tissue autofluorescence allowed automatic alignment of 2D microscopy images to the 3D µCT data using scripted co-registration and automated image warping algorithms. Warped IF images, which were accurately aligned with the µCT datasets, allowed 3D segmentation of immunoreactive tissue microstructures in the human lung. Blood vessels were segmented semi-automatically using the co-registered µCT datasets. Correlating 2D IF and 3D µCT data enables accurate identification, localization and segmentation of features in fixed soft lung tissue. Our novel correlative imaging workflow provides faster and more automated 3D segmentation of µCT datasets. This is applicable to the huge range of formalin-fixed paraffin-embedded tissues held in biobanks and archives.

Funder

Nikon X-Tek Systems Ltd.

Medical Research Council

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3