Affiliation:
1. School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
2. CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
Abstract
Knowledge of factors affecting a species' breeding biology is crucial to understanding how environmental variability impacts population trajectories and enables predictions on how species may respond to global change. The Australian fur seal (Arctocephalus pusillus doriferus, AUFS) represents the largest marine predator biomass in southeastern Australia, an oceanic region experiencing rapid warming that will impact the abundance and distribution of prey. The present study (1997–2020) investigated breeding phenology and pup production in AUFS on Kanowna Island, northern Bass Strait. The pupping period varied by 11 days and the median pupping date by 8 days and were negatively correlated to 1- and 2-year lagged winter zonal winds, respectively, within Bass Strait. While there was no temporal trend over the study period, annual pup production (1386–2574 pups) was negatively correlated to 1-year lagged summer zonal winds in the Bonney Upwelling region and positively correlated to the current-year Southern Oscillation Index (SOI). In addition, a fecundity index (ratio of new-born pups to adult females at the median pupping date) was positively correlated with current-year Southern Annular Mode (SAM) conditions. Periods of positive SOI and positive SAM conditions are forecast to increase in coming decades, suggesting advantageous conditions for the Kanowna Island AUFS population.
Funder
Holsworth Wildlife Research Endowment
Winnifred Violet Scott Trust
Sea World Research and Rescue Foundation
Australian Research Council
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献