Long-term decline in body condition of female Australian fur seals: potential causes and implications

Author:

Geeson Johanna J.,Hindell Mark A.,Hobday Alistair J.,Speakman Cassie N.,Arnould John P. Y.

Abstract

The Australian fur seal (Arctocephalus pusillus doriferus, AUFS) population is still recovering from the over-exploitation of the commercial-sealing era (18th and 19th centuries). While the population is considered to be only < 47% of its pre-harvest size, it now represents the greatest resident marine predator biomass in the south-eastern Australian marine ecosystem. The region is experiencing rapid environmental change and, as a keystone predator species, the AUFS is an indicator of ecosystem health. In the present study, the body mass, standard length and body condition index (BCI) were analysed between 1997-2021 in adult female AUFS provisioning pups on Kanowna Island (northern Bass Strait), the third largest colony for the species. While substantial inter-annual fluctuations were observed, there was no temporal trend in standard length during the 23-year study period. In contrast, body mass and, consequently, BCI decreased significantly, suggesting the population is experiencing changing nutritional conditions. While these changes do not appear to be due to competition with commercial fisheries or population expansion, weak but significant negative relationships were observed between BCI and 1-year lagged sea surface temperature and summer zonal winds in the Bonney Upwelling region, and both current- and 2-year lagged Indian Ocean Dipole (IOD). These findings suggest the BCI of AUFS may continue to decline under predicted climate change conditions. While a lack of a concurrent decline in pup production could indicate a degree of nutritional tolerance or flexibility in energy allocation, further monitoring is required to assess decreases in reproductive parameters (e.g., birth mass, pre-weaning growth rates) or vital rates, which would be expected with continued nutritional stress.

Funder

Australian Research Council

Sea World Research and Rescue Foundation

Holsworth Wildlife Research Endowment

Winifred Violet Scott Charitable Trust

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3