The formation of vortices from a surface of discontinuity

Author:

Abstract

Helmholtz was the first to remark on the instability of those “liquid surfaces” which separate portions of fluid moving with different velocities, and Kelvin, in investigating the influence of wind on waves in water, supposed frictionless, has discussed the conditions under which a plane surface of water becomes unstable. Adopting Kelvin’s method, Rayleigh investigated the instability of a surface of discontinuity. A clear and easily accessible rendering of the discussion is given by Lamb. The above investigations are conducted upon the well-known principle of “small oscillations”—there is a basic steady motion, upon which is superposed a flow, the squares of whose components of velocity can be neglected. This method has the advantage of making the equations of motion linear. If by this method the flow is found to be stable, the equations of motion give the subsequent history of the system, for the small oscillations about the steady state always remain “small.” If, however, the method indicates that the system is unstable, that is, if the deviations from the steady state increase exponentially with the time, the assumption of small motions cannot, after an appropriate interval of time, be applied to the case under consideration, and the equations of motion, in their approximate form, no longer give a picture of the flow. For this reason, which is well known, the investigations of Rayleigh only prove the existence of instability during the initial stages of the motion. It is the object of this note to investigate the form assumed by the surface of discontinuity when the displacements and velocities are no longer small.

Publisher

The Royal Society

Subject

General Medicine

Cited by 384 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3