Abstract
The derivative strings of Barndorff-Nielsen and the differential strings of Blӕsild & Mora are considered here from the coordinate-free viewpoint. It is shown that the derivative strings of given length and degree over a differentiable manifold form a vector bundle associated to a principal bundle of higher-order frames and that there is an analogous result for differential strings. Bundles of derivative strings are identified with vector bundles obtained from 0-truncated versions of Ehresmann’s semi-holonomic jets by dualization and by taking tensor products. Similarly, bundles of differential strings are identified with vector bundles obtained from semi-holonomic jets of certain tensor fields.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献