Connections on Non-Parametric Statistical Manifolds by Orlicz Space Geometry

Author:

Gibilisco Paolo1,Pistone Giovanni1

Affiliation:

1. Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy

Abstract

The non-parametric version of Information Geometry has been developed in recent years. The first basic result was the construction of the manifold structure on ℳμ, the maximal statistical models associated to an arbitrary measure μ (see Ref. 48). Using this construction we first show in this paper that the pretangent and the tangent bundles on ℳμ are the natural domains for the mixture connection and for its dual, the exponential connection. Second we show how to define a generalized Amari embedding AΦ:ℳμ→SΦ from the Exponential Statistical Manifold (ESM) ℳμ to the unit sphere SΦ of an arbitrary Orlicz space LΦ. Finally we show that, in the non-parametric case, the α-connections ∇α(α∈(-1,1)) must be defined on a suitable α-bundle ℱα over ℳμ and that the bundle-connection pair (ℱα, ∇α) is simply (isomorphic to) the pull-back of the Amari embedding Aα: ℳμ→S2/1-α were the unit sphere S2/1-αcL2/1-α is equipped with the natural connection.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mathematical Physics,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3