Abstract
A theoretical analysis to calculate the steady-state temperature distribution within a cylindrical heat sink configuration, where the thermal conductivity is dependent on the temperature, is outlined. The analysis applies to any heat sink arrangement that can be treated as one or more homogeneous solid cylinders mounted on a semi-infinite heat sink, where the heat flux incident on both faces of each cylinder is uniform over a given centralized circular region. The model is used to analyse the temperature distribution within the heat sink configurations used commonly to package two-terminal semiconductor devices that are operated as sources of electromagnetic radiation in microwave oscillators. Results are presented that show how the maximum temperature rise within commercially available heat sink packages, depends on the input heat flux and the dimensions and thermal conductivity of the materials. Furthermore, results that show how the temperature rise varies across the interfaces of given heat sink configurations, similar to those used commercially, are given also.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献