Abstract
We consider the problem of designing the section of a cylinder to minimize the drag per unit length it experiences when placed perpendicular to a uniform stream at low Reynolds number; we suppose the area of the cross-section to be given, and the flow to be two-dimensional. The relevant properties of a cylinder of general cross-section in a particular orientation can conveniently be expressed in terms of its equivalent radius; when the drag and flow at infinity are parallel, this equivalent radius is the radius of the circular cylinder giving rise to the same drag per unit length. We obtain a variational formula for this equivalent radius when the surface of the cylinder is perturbed; this shows that the optimum profile we seek must be such that the flow past it has a vorticity of constant magnitude at its surface, and this fact enables the optimum to be determined analytically. The efficacy of a particular section may be measured by its effective radius, this being the equivalent radius when the length scale is chosen to give the section an area
π
; thus a circular cylinder has an effective radius of 1. The minimum possible effective radius, achieved by the optimum profile, is 0.88876. To illustrate some of the arguments we exploit in a more familiar setting, we also obtain a variational formula for the drag on a three-dimensional body in Stokes flow when its surface is perturbed.
Reference16 articles.
1. Batchelor G. K. 1967 An introduction to fluid dynamics. Cambridge University Press.
2. On the numerical computation of the optimum profile in Stokes flow
3. Do Carmo M. P. 1976 Differential geometry of curves and surfaces. Prentice-Hall.
4. Stokes flow past a two-dimensional lens. Z. angew;Dorrepaal J. M.;Math. Phys.,1979
5. Gakhov F. D. 1966 Boundary value problems. Pergamon Press.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献