A geometrical interpretation of Kane’s Equations

Author:

Abstract

The method for the development of the equations of motion for systems of constrained particles and rigid bodies, developed by T. R. Kane and called Kane’s Equations, is discussed from a geometric viewpoint. It is shown that what Kane calls partial velocities and partial angular velocities may be interpreted as components of tangent vectors to the system’s configuration manifold. The geometric picture, when attached to Kane’s formalism shows that Kane’s Equations are projections of the Newton-Euler equations of motion onto a spanning set of the configuration manifold’s tangent space. One advantage of Kane’s method, is that both non-holonomic and non-conservative systems are easily included in the same formalism. This easily follows from the geometry. It is also shown that by transformation to an orthogonal spanning set, the equations can be diagonalized in terms of what Kane calls the generalized speeds. A further advantage of the geometric picture lies in the treatment of constraint forces which can be expanded in terms of a spanning set for the orthogonal complement of the configuration tangent space. In all these developments, explicit use is made of a concrete realization of the multidimensional vectors which are called K -vectors for a K -component system. It is argued that the current presentation also provides a clear tutorial route to Kane’s method for those schooled in classical analytical mechanics.

Publisher

The Royal Society

Subject

General Medicine

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3