The geometry of equations of motion: particles in equivalent universes

Author:

Honein Theresa E.ORCID,O’Reilly Oliver M.ORCID

Abstract

AbstractThe equations of motion for the simplest non-holonomically constrained system of particles are formulated using six methods: Newton–Euler, Lagrange, Maggi, Gibbs–Appell, Kane, and Boltzmann–Hamel. The challenging tasks of exploring and explaining the relationships and equivalences between these formulations is accomplished by constructing a single representative particle for the system of particles. The single particle is constrained to move on a configuration manifold. The explicit construction of sets of tangent vectors to the manifold and their relation to the forces acting on the single particle are used to provide several helpful geometric interpretations of the relationships between the formulations. These interpretations can also be extended to help understand the relationships between different formulations of the equations of motion for more complex systems, including systems of rigid bodies and particles.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

Reference38 articles.

1. Ahmed, N.: Canonical forms of Nielsen’s and Cenov’s dynamical equations. Acta. Mech. Sin. 9(2), 171–176 (1993). https://doi.org/10.1007/BF02487497

2. Appell, M.P.: Sur une forme générale des équations de la dynamique, Fascicule 1. Mémorial des Sciences Mathématiques (1925)

3. Bahar, L.Y.: On a non-holonomic problem proposed by Greenwood. Int. J. Non-linear Mech. 28(2), 169–186 (1993). https://doi.org/10.1016/0020-7462(93)90055-P

4. Bizyaev, I., Borisov, A., Mamaev, I.: The Chaplygin sleigh with parametric excitation: chaotic dynamics and nonholonomic acceleration. Regul. Chaotic Dyn. 22, 955–975 (2017). https://doi.org/10.1134/S1560354717080056

5. Blackowiak, A.D., Rand, R.H., Kaplan, H.: The dynamics of the celt with second-order averaging and computer algebra. In: Proceedings of DETC’97: 1997 ASME Design Engineering Technical Conferences. Sacramento, California (1997). Paper Number DETC97/VIB–4103

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Geometric Derivation of the Governing Equations of Motion of Nonholonomic Dynamic Systems;Journal of Computational and Nonlinear Dynamics;2024-08-22

2. New method for multibody dynamics based on unknown constraint force;Science China Technological Sciences;2024-02-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3