The thermal conductivity of tin, mercury, indium and tantalum at liquid helium temperatures

Author:

Abstract

An account is given of a method of employing differential gas thermometers to measure the thermal conductivity of metals at low temperatures, with temperature differences of only 0·02º K in the specimen. Experimental curved are presented showing the variation of thermal conductivity with temperature between 1·7 and 4·3º K for pure tin, alloys of tin with mercury, pure mercury, alloys of mercury with cadmium and indium, pure indium and pure tantalum, in both superconducting and normal states. The normal conductivity of strain-free specimens containing less than about 0·1% of impurity appears to be mainly electronic, and to behave roughly in accordance with the theory of Wilson, although notable discrepancies arise in the detailed application of this theory. The ratio of superconducting to normal thermal conductivity varies with temperature roughly in the manner suggested by Heisenberg when the electrons are mainly scattered by impurities, but follows a radically different curve, for which no theoretical explanation is yet available, when lattice vibrations are the dominant scattering mechanism. For impurity contents greater than 0·1%, or severe internal strains, the normal thermal conductivity contains an appreciable lattice component. The behaviour of the superconducting curve suggests that where crystal boundaries scatter the lattice waves, the lattice conductivity is unaltered as the metal passes from the superconducting to the normal state, but where electrons scatter the lattice waves, the lattice conductivity is reduced in this transition, possibly because of the increase in the number of scattering centres.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference19 articles.

1. Bremmer H. & de Haas W. J. 1936 Physica 3 672.

2. de Haas W. J. & Engelkes A. D. 1937 Physica 4 325.

3. de Haas W. J. & Biermasz Th. 1938 Physica 5 320.

4. de Haas W. J. & Bremmer H. 1931 Commun. Phys. Lab. Univ. Leiden 214 2206 220c.

5. de Haas W. J. & Rademakers A. 1940 Physica 7 992. Gruneisen E. & Goens E. 1927 Heisenberg W. 1948 Z. Naturforach. 3a 65. Hulm J. K. 1949 Nature 163 368. Z.Phys. 44 614 and 46 151.

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3