Entropy Generation Analysis on Magnetohydrodynamic Eyring-Powell Nanofluid Over a Stretching Sheet by Heat Source/Sink

Author:

Mishra S. R.1,Baag S.2,Parida S. K.3

Affiliation:

1. Department of Mathematics, ITER, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar 751030, Odisha, India

2. Department of Physics, College of Basics Sciences and Humanities, OUAT, Bhubaneswar, India

3. Department of Physics, ITER, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar 751030, Odisha, India

Abstract

In this communication, the analysis of the entropy generation on magnetohydrodynamic (MHD) Eyring-Powell nanofluid over a stretching sheet with the effects of heat source/sink is reported. The presence of thermophoresis and Brownian motion are responsible for the enhancement in the properties of heat transfer. With the help of suitable similarity transformation entity, the involved governing partially differential equations (PDEs) are converted into nonlinear coupled ordinary differential equations (ODEs). Further, converted differential equations are solved by numerical methods such as Runge-Kutta fourth order correlated with shooting technique. Influence of various pertinent physical parameters is discussed via velocity, temperature, concentration and entropy profiles. The effect of these variables on the quantities of engineering advance such as Nusselt and Sherwood number are furnished in illustrative form and discussed. Further, the major findings of the outcomes are laid down as follows; the Brownian motion of the particles enhances the fluid temperature whereas thermophoresis retards significantly. The entropy generation overshoots due to the increase in the Reynolds number. Nanofluids with high critical heat fluxes and high-power density have the potential to provide the required cooling effect in military ships, submarines, wave energy converters and high-power laser diodes.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3