MHD Pulsatile Flow of Blood-Based Silver and Gold Nanoparticles between Two Concentric Cylinders

Author:

Shahzad FaisalORCID,Jamshed WasimORCID,Aslam FarheenORCID,Bashir Rasheeda,Tag El Din El Sayed M.ORCID,Khalifa Hamiden Abd El-Wahed,Alanzi Agaeb Mahal

Abstract

Pulsatory movements appear in a variety of fascinating applications involving periodic flow propagation and control. Pulsing encourages mixing and, as a result, mass and heat exchange with the boundaries. Pulsing also helps to decrease surface fouling by allowing solid particles to migrate. An exact solution of the Navier–Stokes equations for the transport of an incompressible viscous fluid in a channel with arbitrary pressure distribution is described in this study. The flow is defined by two primary parameters: the pulsation parameter, which is determined by the periodic pressure gradient, and the kinetic Reynolds number, which is determined by the pulsation frequency. The purpose of employing hybrid nanofluid (HNF) is to increase the base fluid’s thermal conductivity. We regard Ag and Au as nanoparticles (NPs) and blood as a base fluid for this phenomenon. Broadening this reveals that the consideration of nanoparticles has impressively extended the warm movement at the parcels of both turbulent and laminar frameworks. Attention is paid to the slope of speed, temperature, and voltage. The geometric model is therefore described using a symmetry technique. We developed the governing equation for this problem’s analytical solutions. The velocity and temperature fields solution is given in the form of the Bessel and modified Bessel functions. Graph results show the mathematical benefits of the current limits: for instance, Hartmann number M, solid volume part of nanoparticles ϕ, Reynolds number Reβ, Prandtl number Pr, intermittent slob limit, etc. The strain angles introduced in the stress contrast, frictional force, velocity profile, and temperature profile were obtained, and the characteristics of the vortex were investigated. Resources at various boundaries of the perceptual flow are examined. As with the final essence, the smoothest results are analyzed and recorded. It has also been discovered that the velocity may be regulated by the external magnetic field, which affects the temperature profiles and hence the heat transfer, which can be enhanced or lowered by mastering the magnetic field.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference53 articles.

1. MHD pulsatile flow of engine oil based carbon nanotubes between two concentric cylinders;Haq;Results Phys.,2017

2. Effect of magnetic field on blood flow;Vardanyan;Biofizika,1973

3. The amplitude of sound waves in resonators;Richardson;Proc. Phys. Soc.,1928

4. Transverse velocity gradient near the mouths of pipes in which an alternating or continuous flow of air is established;Richardson;Proc. R. Soc. London. A,1929

5. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known;Womersley;J. Physiol.,1955

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3