Wavelength-Dependent Nonlinear Optical Activities of Near-Infrared Boron-Dipyrromethene Derivatives

Author:

Ren Can1,Hu Ju-Guang1

Affiliation:

1. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhe, 518060, China

Abstract

Near-infrared (NIR) organic dyes with strong ultrafast nonlinear optical (NLO) activities are important for various applications. However, the study of the wavelength-dependent NLO properties of NIR dyes is still ongoing. In this work, we present the first comparison of the NLO properties of two NIR boron-dipyrromethene (BODIPY) derivatives at different excitation wavelengths, in which strong electron-donating groups, namely 4-(N,N-dimethylamino)phenyl and 1-ethyl-1,2,3,4-tetrahydroquinoline groups, are connected through the BODIPY cores. Results obtained from Z-scan experiments show that the two BODIPY derivatives exhibit strong saturable absorption and large modulation depth when excited by femtosecond pulses at 800 nm. With 1300 nm excitation, both derivatives exhibit strong nonlinear refraction. In addition, the derivatives also display effective two-photon action cross-sections in the wavelength range of 1200–1600 nm. They are potentially excellent nonlinear optical materials. This comprehensive comparison of the NLO properties of BODIPY derivatives can suggest new possibilities for the design and development of NIR NLO materials.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3