Selective Hydrogenation of Acetylene to Ethylene Over Nanosized Gold and Palladium Supported Catalysts

Author:

Lee Gyeongmin1,Jeong Woon-Jo2,Ahn Ho-Geun1

Affiliation:

1. Department of Chemical Engineering, Sunchon National University, Maegok-dong, Suncheon-si, Jeonnam, 57922, South Korea

2. Department of Information Communications, Chosun College of Science & Technology, 309-1, Pilmun-daero, Dong-gu, Gwangju, 61453, South Korea

Abstract

Ethylene, the main raw material for polyethylene production, is a by-product produced by thermally decomposing naphtha and it contains a small amount of acetylene. The acetylene reacts as a permanent catalyst poison for the ethylene polymerization catalyst. In this study, we wanted to improve the acetylene conversion and the ethylene selectivity by selective hydrogenation of acetylene for removing acetylene contained in ethylene. Catalyst was prepared by loading nanosized gold (Au) and palladium (Pd) particles on support (Al2O3, TiO2). Deposition order Au and Pd particles was changed. The activity of the catalyst was investigated using a flow-typed fixed bed reactor under atmospheric pressure. Au and Pd particles deposited on TiO2 were oxidized to Au2O3 and PdO due to strong metal support interaction (SMSI). It was considered that the Au/Pd/Al2O3 catalyst was more active than the Pd/Au/Al2O3 catalyst due to the formation of the interface between Au particles and Pd particles (or support). But Pd/Au/Al2O3 catalyst is considered to have poor activity because Pd particles cover part of the interface between Au and the support. Au/Pd/Al2O3 catalyst showed the best catalytic activity, and acetylene conversion and ethylene selectivity were 100% and about 80% at 40 °C, respectively.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3