Light Detection and Carrier Transportation Mechanism in p-Type Si/n-Type Nanocrystalline FeSi2 Heterojunctions Produced via Radio-Frequency Magnetron Sputtering

Author:

Sittisart Pattarapol1,Promros Nathaporn1,Chaleawpong Rawiwan1,Charoenyuenyao Peerasil1,Borwornpornmetee Nattakorn1,Tanaka Yūki2,Yoshitake Tsuyoshi2

Affiliation:

1. Department of Physics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok, 10520, Thailand

2. Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan

Abstract

In the current research, p-type Si/n-type nanocrystalline FeSi2 heterojunctions were fabricated at room temperature with an argon pressure of 2.66×10−1 Pa by means of the utilization of a radiofrequency magnetron sputtering technique. These heterojunctions were studied for the carrier transportation mechanism and near-infrared (NIR) light detection at various temperatures ranging from 300 K down to 150 K. At 300 K, the fabricated heterojunctions displayed a typical rectifying action together with substantial leakage current. At 150 K, the leakage current was clearly reduced by greater than four orders of magnitude. The value of the ideality factor (n) at 300 K was computed to be 1.87 and this was nearly constant under temperatures ranging from 300 down to 260 K. This implies that a recombination process was predominant. At temperatures lower than 250 K, the value of n was found to be more than 2. These results demonstrated that the carrier transportation mechanism was governed by a tunnelling process. A weak response for the irradiation of NIR light was observed at 300 K. At 150 K, the ratio of the photocurrent to the dark current evidently increased by more than two orders of magnitude. The detectivity at 150 K was 4.84×1010 cm Hz1/2 W−1 at zero bias voltage, which was clearly improved as compared to that at 300 K.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3