Author:
Chakraborty Ayan,Sain Mohini,Kortschot Mark,Cutler Sean
Abstract
The successful dispersion of cellulose fibers of submicrometer diameter in polymers has been restricted to solution-cast films so far. In this work, the dispersion of microfibers in biopolymers was investigated by melt-mixing using conventional processing equipment. Thermoplastic starch
and a blend of starch and polylactic acid (PLA) were used as matrix materials. A suspension of cellulose microfibers less than 1 μm in diameter was prepared in water. This microfiber suspension was poured into molten thermoplastic starch to obtain fiber loadings up to 2%. The composites
were compression molded into thin films roughly 0.25 mm thick. there was a 10% increase in tensile strength and a 50% increase in stiffness with each percentage increase in microfiber loading in the starch polymer. Similar improvement in tensile properties was also noted for a polymer system
prepared by blending starch and PLA. Laser confocal microscopy images were analyzed to quantify microfiber dispersion at different composite processing parameters. This was the first work where successful dispersion of cellulose fibers of submicrometer was achieved in a composite prepared
solely by the melt-mixing process.
Publisher
American Scientific Publishers
Subject
Renewable Energy, Sustainability and the Environment,Biomaterials,Bioengineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献