The Protective Effect of Genipin on Oxidative Stress Under Hypoxia and Hyperglycemia in Retinal Pigment Epithelial Cells

Author:

Wu Daifeng1,Wang Yulin2,Wu Yueyang3,Ding Shujuan1

Affiliation:

1. The Department of Ophthalmology, Fuzhou First People’s Hospital of Jiangxi Province, Fuzhou, Jiangxi, 344000, China

2. The Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330019, China

3. School of Statistics, Shanxi University of Finance and Economics, Shanxi, Taiyuan, 030000, China

Abstract

We aimed to explore the protective effect of genipin on retinal pigment epithelial (RPE) cells under hypoxia and hyperglycemia. RPE cells were cultured under hyperglycemia and hypoxia mimicking agent DFX. The cells were then exposed to genipin (10–50 μM), genipin + phospha-tidylinositol (3,4,5) trisphosphates (PIP3) as phosphoinositide 3-kinase (PI3K) inhibitor, and genipin+ PI3K agonist, followed by CCK-8 assay to detect the cell viability. Western blot determined PI3K/protein kinase B (AKT) pathway, and apoptosis- and anti-apoptosis-related proteins levels. MitoSOXTM Red kit was conducted to analyze reactive oxygen species (ROS) content. Finally, confocal immunofluorescence staining assessed nuclear translocation of Nuclear factor erythroid-derived 2-like 2 (Nrf2). Hyperglycemia and hypoxia treatment induced injury in RPE cells, with nuclear translocation of Nrf2 and ROS production. Importantly, administration of genipin alleviated the injury, up-regulated Bcl-2 expression, inhibited caspase-3 activity and nuclear translocation of Nrf2, and down-regulated the level of Bax and ROS. In addition, genipin pretreatment obviously increased PI3K and Akt phosphorylation and promoted cell proliferation and viability. On the contrary, PI3K inhibitor inactivated PI3K/AKT and decreased cell viability while PI3K agonist showed the opposite effect. Genipin prevented oxidative stress and apoptosis induced by hyperglycemia and hypoxia through PI3K/Akt signaling pathway.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3