Study on Nanoparticle Agglomeration During Chemical Mechanical Polishing (CMP) Performance

Author:

Bakier Mohammed A. Y. A.1,Suzuki Keisuke1,Khajornrungruang Panart1

Affiliation:

1. Department of Mechanical Information Science and Technology, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 820-8502, Japan

Abstract

The materials used in base fluids and nanoparticles are varied. One- and two-step manufacturing processes are used to create stable and highly conductive nanofluids. Both methods for making nanoparticle suspensions suffer from nanoparticle agglomeration, which is a major problem in any technique that uses nanopowders. As a result, the key to substantial surface finishing at planarization treatments and increase in the thermal characteristics of nanofluids is the production and suspension of almost non-agglomerated or monodispersed nanoparticles in liquids. This unfavorable aggregation is a major problem in nanopowder technology. Primary material constituents agglomerate rapidly overcoming the stable situation, and nanoparticle agglomerates set out in liquids, making it difficult to create nanofluids using two-step techniques. This research looks at the link between nanoparticle agglomeration during slurry flow and Material Removal Rate (MRR) during chemical mechanical polishing (CMP). The reciprocal relationship between MRR and the shear force exerted by the slurry flow was qualitatively elucidated by the researchers for the theoretical investigation. However, the present manipulation is focused on quantifying the shear stress exerted by nanoparticles floating in the slurry. As a result, the MRR-aggregation model is established based on the relationship between MRR and shear force. The experiment is being carried out to support this idea. The experimental results of aggregation and shear forces have been conducted by some recent studies. However, the extension to the real CMP is very promising for accomplishing a precise style of the removal mechanism and surface finishing criterion as well.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3