The Effects of Friction and Temperature in the Chemical–Mechanical Planarization Process

Author:

Ilie Filip1ORCID,Minea Ileana-Liliana2,Cotici Constantin Daniel2,Hristache Andrei-Florin2

Affiliation:

1. Department of Machine Elements and Tribology, Polytechnic University of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania

2. Department of Biotechnical Systems, Polytechnic University of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania

Abstract

Chemical–mechanical planarization (CMP) represents the preferred technology in which both chemical and mechanical interactions are combined to achieve global planarization/polishing of wafer surfaces (wafer patterns from metal with a selective layer, in this paper). CMP is a complex process of material removal process by friction, which interferes with numerous mechanical and chemical parameters. Compared with chemical parameters, mechanical parameters have a greater influence on the material removal rate (MRR). The mechanical parameters manifest by friction force (Ff) and heat generated by friction in the CMP process. The Ff can be estimated by its monitoring in the CMP process, and process temperature is obtained with help of an infrared rays (IR) sensor. Both the Ff and the MRR increase by introducing colloidal silica (SiO2) as an abrasive into the selective layer CMP slurry. The calculated wafer non-uniformity (WNU) was correlated with the friction coefficient (COF). The control of Ff and of the slurry stability is important to maintain a good quality of planarization with optimal results, because Ff participates in mechanical abrasion, and large Ff may generate defects on the wafer surface. Additionally, the temperature generated by the Ff increases as the SiO2 concentration increases. The MRR of the selective layer into the CMP slurry showed a non-linear (Prestonian) behavior, useful not only to improve the planarization level but to improve its non-uniformity due to the various pressure distributions. The evaluation of the Ff allowed the calculation of the friction energy (Ef) to highlight the chemical contribution in selective-layer CMP, from which it derived an empirical model for the material removal amount (MRA) and validated by the CMP results. With the addition of abrasive nanoparticles into the CMP slurry, their concentration increased and the MRA of the selective layer improved; Ff and MRR can be increased due to the number of chemisorbed active abrasive nanoparticles by the selective layer. Therefore, a single abrasive was considered to better understand the effect of SiO2 concentration as an abrasive and of the MRR features depending on abrasive nanoparticle concentration. This paper highlights the correlation between friction and temperature of the SiO2 slurry with CMP results, useful to examine the temperature distribution. All the MRRs depending on Ef after planarization with various SiO2 concentrations had a non-linear characteristic. The obtained results can help in developing a CMP process more effectively.

Publisher

MDPI AG

Subject

General Materials Science

Reference30 articles.

1. Modelling of the contact processes in a friction pair with selective-transfer;Ilie;J. Mater. Res. Technol.,2021

2. Chemical mechanical polishing: A selective review of R&D trends in abrasive particle behaviors and wafer materials;Lee;Tribol. Lubr.,2019

3. Advanced in Chemical Mechanical Planarization (CMP);Babu;Electronic and Optical Materials,2021

4. Tribology research trends in chemical mechanical polishing (CMP) process;Lee;Tribol. Lubr.,2018

5. Approaches to Sustainability in Chemical Mechanical Polishing (CMP): A Review;Lee;Int. J. Precis. Eng. Manuf. Technol.,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3