A New Derivation of Exact Solutions for Incompressible Magnetohydrodynamic Plasma Turbulence

Author:

Morad Adel M.1,Maize S. M. A.2,Nowaya A. A.2,Rammah Y. S.2

Affiliation:

1. Department of Mathematics and Computer Science, Menoufia University, Shebin-Elkoom, 32511 Egypt

2. Physics Department, Faculty of Science, Menoufia University, Shebin Elkom, 32511 Egypt

Abstract

The objective of this paper is to study the propagation of nonlinear, quasi-parallel, magnetohydrodynamic waves of small-amplitude in a cold Hall plasma of constant density. Magnetohydrodynamic equations, along with the cold plasma were expanded using the reductive perturbation method, which leads to a nonlinear partial differential equation that complies with a modified form of the derivative nonlinear evolution Schrödinger equation. Exact solutions of the turbulent magnetohydrodynamic model in plasma were formulated for the physical quantities that describe the problem completely by using the complex ansatz method. In addition, the complete set of equations was used taking into account the magnetic field, which can be considered to be constant in the x-direction to create stable vortex waves. Vortex solutions of the modified nonlinear Schrödinger equation (MNLS) were compared with the solutions of incompressible magnetohydrodynamic equations. The obtained equations differ from the standard NLS equation by one additional term that describes the interaction of the nonlinear waves with the constant density. The behavior of both the velocity profile and the waveform of pressure were studied. The results showed that there are clear disturbances in the identity of the velocity and thus pressure. The identity of both velocity and pressure results from that a magnetic field is formed.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3