Analytic Solutions of 2D Cubic Quintic Complex Ginzburg-Landau Equation

Author:

Tchuimmo F. Waffo1,Tafo J. B. Gonpe12ORCID,Chamgoue A.3,Mezamo N. C. Tsague1,Kenmogne F.4ORCID,Nana L.1

Affiliation:

1. Department of Physics, Faculty of Science, Pure Physics, Laboratory, Group of Nonlinear Physics and Complex Systems, University of Douala, P.O. Box 24157, Douala, Cameroon

2. Department of Base Scientific Education, Advanced Teacher’s Training College of the Technical Education, University of Douala, P.O. Box 8213, Douala, Cameroon

3. Department of Physics, School of Geology and Mining Engineering, University of Ngaoundéré, P.O. Box 115 Meiganga, Cameroon

4. Department of Civil Engineering, Advanced Teacher’s Training College of the Technical Education, University of Douala, P.O. Box 8213, Douala, Cameroon

Abstract

The dynamical behaviour of traveling waves in a class of two-dimensional system whose amplitude obeys the two-dimensional complex cubic-quintic Ginzburg-Landau equation is deeply studied as a function of parameters near a subcritical bifurcation. Then, the bifurcation method is used to predict the nature of solutions of the considered wave equation. It is applied to reduce the two-dimensional complex cubic-quintic Ginzburg-Landau equation to the quintic nonlinear ordinary differential equation, easily solvable. Under some constraints of parameters, equilibrium points are obtained and phase portraits have been plotted. The particularity of these phase portraits obtained for new ordinary differential equation is the existence of homoclinic or heteroclinic orbits depending on the nature of equilibrium points. For some parameters, one has the orbits starting to one fixed point and passing through another fixed point before returning to the same fixed point, predicting then the existence of the combination of a pair of pulse-dark soliton. One has also for other parameters, the orbits linking three equilibrium points predicting the existence of a dark soliton pair. These results are very important and can predict the same solutions in many domains, particularly in wave phenomena, mechanical systems, or laterally heated fluid layers. Moreover, depending on the values of parameter systems, the analytical expression of the solutions predicted is found. The three-dimensional graphs of these solutions are plotted as well as their 2D plots in the propagation direction.

Funder

Research4Life

Publisher

Hindawi Limited

Subject

Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3