Fabrication of 3-Dimensional PbZr1−x TixO3 Nanoscale Thin Film Capacitors for High Density Ferroelectric Random Access Memory Devices

Author:

Shin Sangmin,Koo June-Mo,Kim Sukpil,Seo Bum-Seok,Lee Jung-Hyun,Baik Hionsuck,Park Youngsoo,Han Hee,Baik Sunggi,Lee June Key

Abstract

PbZrx Ti1−xO3 (PZT) thin films were deposited on 3-dimensional (3D) nano-scale trench structures for use in giga-bit density ferroelectric random access memories. PZT thin films were deposited by liquid delivery metalorganic chemical vapor deposition using Pb(thd)2, Zr(MMP)4, and Ti(MMP)4 precursors dissolved in ethyl cyclohexane. Iridium thin films were deposited by atomic layer deposition, and they exhibited excellent properties for capacitor electrodes even at a thickness of 20 nm. The trench capacitor was composed of three layers, viz. Ir/PZT/Ir (20/60/20 nm), and had a diameter of 250 nm and a height of 400 nm. Almost 100% step coverage was obtained at a deposition temperature of 530 °C. The PZT thin film capacitors with a thickness of 60 nm on a planar structure exhibited a remnant polarization (Pr of 28 μC/cm2, but the Pr value of the 3D PZT capacitors decreased slightly with decreasing 3D trench pattern size. The transmission electron microscope analysis indicated that the PZT thin films had compositional uniformity in the 3D trench region. Both columnar and granular grains were formed on the sidewalls of the trench capacitors, and their relative proportion exhibited strong size dependence. The trench capacitors with more columnar PZT grains showed good switching behavior under an external bias of 2.1 V and had a remnant polarization of 19 ∼ 24 μC/cm2.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3