Affiliation:
1. Computer Science Engineering Department, SNS College of Technology, Coimbatore 641035, India
2. Computer Science Engineering Department, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, India
Abstract
The demand in breast cancer’s early detection and diagnosis over the last few decade has given a new research avenues. For an individual who is suffered from breast cancer, a successful treatment plan can be specified if early stage diagnosis of non-communicable disease is done
as stated by world health organization (WHO). Around the world, mortality can be reduced by cure disease’s early diagnosis. For breast cancer’s early detection and to detect other abnormalities of human breast tissue, digital mammogram is used as a most popular screening method.
Early detection is assisted by periodic clinical check-ups and self-tests and survival chance is significantly enhanced by it. For mammograms (MGs), deep learning (DL) methods are investigated by researchers due to traditional computer-aided detection (CAD) systems limitations and breast cancer’s
early detection’s extreme importance and patients false diagnosis high impact. So, there is need to have a noninvasive cancer detection system which is efficient, accurate, fast and robust. There are two process in proposed work, Histogram Rehabilitated Local Contrast Enhancement (HRLCE)
technique is used in initial process for contrast enhancement with two processing stages. Contrast enhancements potentiality is enhanced while preserving image’s local details by this technique. So, for cancer classification, Particle Swarm Optimization (PSO) and stacked auto encoders
(SAE) combined with framework based on DNN called SAE-PSO-DNN Model is used. The SAE-DNN parameters with two hidden layers are tuned using PSO and Limited-memory BFGS (LBFGS) is used as a technique for reducing features. Specificity, sensitivity, normalized root mean square erro (NRMSE), accuracy
parameters are used for evaluating SAE-PSO-DNN models results. Around 92% of accurate results are produced by SAE-PSO-DNN model as shown in experimentation results, which is far better than Convolutional Neural Network (CNN) as well as Support Vector Machine (SVM) techniques.
Publisher
American Scientific Publishers
Subject
Health Informatics,Radiology, Nuclear Medicine and imaging
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献