An Early Breast Cancer Detection System Using Stacked Auto Encoder Deep Neural Network with Particle Swarm Optimization Based Classification Method

Author:

Sangeetha K.1,Prakash S.2

Affiliation:

1. Computer Science Engineering Department, SNS College of Technology, Coimbatore 641035, India

2. Computer Science Engineering Department, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, India

Abstract

The demand in breast cancer’s early detection and diagnosis over the last few decade has given a new research avenues. For an individual who is suffered from breast cancer, a successful treatment plan can be specified if early stage diagnosis of non-communicable disease is done as stated by world health organization (WHO). Around the world, mortality can be reduced by cure disease’s early diagnosis. For breast cancer’s early detection and to detect other abnormalities of human breast tissue, digital mammogram is used as a most popular screening method. Early detection is assisted by periodic clinical check-ups and self-tests and survival chance is significantly enhanced by it. For mammograms (MGs), deep learning (DL) methods are investigated by researchers due to traditional computer-aided detection (CAD) systems limitations and breast cancer’s early detection’s extreme importance and patients false diagnosis high impact. So, there is need to have a noninvasive cancer detection system which is efficient, accurate, fast and robust. There are two process in proposed work, Histogram Rehabilitated Local Contrast Enhancement (HRLCE) technique is used in initial process for contrast enhancement with two processing stages. Contrast enhancements potentiality is enhanced while preserving image’s local details by this technique. So, for cancer classification, Particle Swarm Optimization (PSO) and stacked auto encoders (SAE) combined with framework based on DNN called SAE-PSO-DNN Model is used. The SAE-DNN parameters with two hidden layers are tuned using PSO and Limited-memory BFGS (LBFGS) is used as a technique for reducing features. Specificity, sensitivity, normalized root mean square erro (NRMSE), accuracy parameters are used for evaluating SAE-PSO-DNN models results. Around 92% of accurate results are produced by SAE-PSO-DNN model as shown in experimentation results, which is far better than Convolutional Neural Network (CNN) as well as Support Vector Machine (SVM) techniques.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3