Breast Cancer Classification from Histopathological Images using Future Search Optimization Algorithm and Deep Learning

Author:

Gurumoorthy Ramalingam,Kamarasan Mari

Abstract

In medical imaging, precise recognition of Breast Cancer (BC) is a challenge due to the complications of breast tissues. Histopathological detection is still considered the standard in BC detection. Still, the dramatic increase in workload and the complexity of histopathological image (HPI) make this task labor-intensive and dependent on the pathologist, making the advance of automated and precise HPI analysis techniques needed. Due to the automated feature extraction capability, Deep Learning (DL) methods have been effectively used in different sectors, particularly in the medical imaging sector. This study develops the future search algorithm with a DL-based breast cancer detection and classification (FSADL-BCDC) method. The FSADL-BCDC technique examines HPIs to detect and classify BC. To achieve this, the FSADL-BCDC technique implements Wiener Filtering (WF)-based preprocessing to eliminate the noise in the images. Additionally, the FSADL-BCDC uses the ResNeXt method for feature extraction with a Future Search Algorithm (FSA)-based tuning procedure. For BCDC, the FSADL-BCDC technique employs a Hybrid Convolutional Neural Network along with the Long Short-Term Memory (HCNN-LSTM) approach. Finally, the Sunflower Optimization (SFO) approach adjusts the hyperparameter values of the HCNN-LSTM. The outcomes of the FSADL-BCDC are inspected on a standard medical image dataset. Extensive relational studies highlighted the improved performance of the FSADL-BCDC approach in comparison with known methods by exhibiting an output of 96.94% and 98.69% under diverse datasets.

Publisher

Engineering, Technology & Applied Science Research

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3