Affiliation:
1. College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, P. R. China
2. Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
Abstract
Chemical vapor deposition (CVD) is widely applied in synthesizing high quality graphene, whose size, shape and structure are strongly impacted by the hydrogen concentration and, however, its role is not fully understood. In the traditional CVD, the concentration of the hydrogen keeps
the constant in whole synthesis process and subsequently the nucleation and growth process are carried out simultaneously, therefore, its roles are usually confused and indistinguishable. In this report, the role of hydrogen on the growth of graphene nanostructure was creatively studied by
introducing a two-step method which divided the nucleation and growth process for the first time. In the first step, the hexagonal graphene domain grown with the same conditions was used as precursor to eliminate the impact of the nucleation. In the second step, the role of hydrogen on the
growth of graphene nanostructure was investigated by controlling the hydrogen concentration. The evolution behavior of the graphene nanostructure with the hydrogen concentration was systematically investigated. Two roles of the hydrogen, namely growth and etching modes, are clearly disclosed
and then a possible mechanism was proposed. The results shown here may provide valuable guidance to understand the graphene growth mechanism and further advance the synthesis of unique graphene nanostructure.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献