Orange Fragrance with Sustained-Release Properties Prepared by Nanoethosomal Encapsulation of Natural Orange Essential Oil

Author:

Chen Qing1,Jiang Heyuan2,Jin Peng1,Zhang Jianyong2,Wang Weiwei2,Wang Kai1,Wu Min1,Qin Dingkui1,Du Qizhen1

Affiliation:

1. Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Science, Zhejiang A&F University, Linan 311300, China

2. Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China

Abstract

There is an upsurge of interest in improving the stability and prolong the scent holding time of fragrances in cosmetic industry. In this study, to encapsulate the orange essential oils (OEO), nanoethosomes were constructed with optimized proportions of ethanol, water, soybean phosphatidylcholine (SPC), Tween 80, and palm oil sucrose esters (PSE). The controlled-release behavior of nanoethosomes was then studied concerning physicochemical stability, microstructure, and olfactory sensation. The sustained-release effectiveness of the nanoethosomal fragrances was influenced by particle size and OEO amount of specific formula. Herein, there was a positive correlation between particle size and sustained-release effectiveness. In particular, the mean diameter of nanoethosomal orange fragrances (nano-OFs)–prepared by EO-ethanol-water-SPC-Tween 80-PSE (3–7:25:72–68:2:1.0:0.1) and 3%, 5%, and 7% OEO–was 68.6±3.6, 79.5±4.5 and 87.3±6.9 nm, respectively. The results of olfactory sensation and GC-MS analysis showed that these fragrances could sustainedly release the aromatic compounds to yield satisfactory smell longer than that of the conventional orange fragrance. Furthermore, the nano-OF made of 5% EO yield a satisfactory smell more than 3 h, which was 3 times of that of the conventional orange fragrance. This fragrance was stable when stored at 4 °C (>1 year) and 25 °C (>10 months). The knowledge gained from this study will be helpful to develop nanoethosomal fragrances or perfumes for commercial use.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3