Effects of Annealing on Firing Stability of a Al2O3/SiNx Stack Passivation Layer for Crystalline Silicon Solar Cells

Author:

Kim Jae Eun1,Bae Soohyun1,Song In Seol2,Hyun Ji Yeon1,Lee Kyung Dong1,Shin Seung Hyun1,Kang Yoonmook2,Lee Hae-Seok1,Kim Donghwan1

Affiliation:

1. Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea

2. KU-KIST Green School, Graduate School of Energy and Environment, Korea University, Seoul 02841, Korea

Abstract

Because of its high passivation quality, Al2O3 is used as the front passivation layer in commercial n-type silicon solar cells. The front passivation layer of a solar cell should have passivation properties and antireflection properties. For process efficiency and protection, SiNx is used as a capping layer on Al2O3. However, the Al2O3/SiNx stack layer has an issue with firing stability during screen printing of the cell, similar to the Al2O3 layer. This is because the Al2O3/SiNx stack layer needs to be fired to form the metal contact. In this study, the firing stability of the Al2O3/SiNx stack layer is investigated and the relation between blister formation and passivation is elucidated. Annealing improves the passivation quality of layers after firing. The order of annealing and stack formation is also one of parameters for firing stability. We used thermal atomic layer deposition to form Al2O3 and plasma enhanced chemical vapor deposition to form SiNx. The refractive index of each layer is 1.6 and 2.0, respectively, and the thickness is 10 nm and 70 nm, respectively. Rapid thermal processing was used for the annealing and firing. Passivation qualities were determined by quasi steady-state photo conductance, and blistering was observed by optical microscopy. Although there is some blistering on the sample annealed at 600 °C, good passivation and good firing stability was observed. We identified that a low density of blisters formed during the annealing step improves the firing stability of the passivation layer by preventing abrupt blister formation during the firing step, which is the cause of thermal degradation.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3