Microfabricated In-Channel Structured Polydimethylsiloxane Microfluidic System for a Lab-on-a-Chip

Author:

Ra Gyu-Sik,Yoo Jong-Chul,Kang C. J.,Kim Yong-Sang

Abstract

In this paper, the fabrication of microfluidic system integrated with micropump and microvalve on the same substrate and its high performance are described. The microfabricated microfluidic system has been optimized for application in capillary electrophoresis–electrochemical detector (CE-ECD), polymerase chain reaction (PCR) and microcantilever. The system is realized by means of a polydimethylsiloxane (PDMS)-glass chip and indium tin oxide heater. The pumping rates of the proposed micropump are measured as functions of the frequency and the duty-ratio of applied voltage. The performances of the microvalves are characterized under the on/off alternation with the applied power of the indium tin oxide (ITO) heater. The flow rate gradually decreases as the applied heater power increase. The optimized membrane thickness for microfluidic system is 350 μm. At this condition, the power of the cut-off flow in microvalve is 400 mW and the 70 nl/min of maximum pumping rate is observed at a duty ratio of 4% and a frequency of 4 Hz for the applied pulse power.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Relationship between Scabies and Stroke: A Population-Based Nationwide Study;International Journal of Environmental Research and Public Health;2019-09-19

2. A Point-of-Care Prothrombin Time Test on a Microfluidic Disk Analyzer Using Alternate Spinning;Journal of Nanoscience and Nanotechnology;2015-02-01

3. The Balance Effect of Acupuncture Therapy Among Stroke Patients;The Journal of Alternative and Complementary Medicine;2014-08

4. Risk of Stroke in Patients with Rheumatism: A Nationwide Longitudinal Population-based Study;Scientific Reports;2014-06-05

5. Development and Applications of 3-Dimensional Integration Nanotechnologies;Journal of Nanoscience and Nanotechnology;2014-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3