Bioconvective Peristaltic Transport of a Nano Eyring-Powell Fluid in a Vertical Asymmetric Channel with Gyrotactic Microorganism

Author:

Vaidya H.1,Prasad K. V.1,Vajravelu K.2,Rajashekhar C.3,Viharika J. U.1,Guinovart-Sanjuan D.2

Affiliation:

1. Department of Mathematics, Vijayanagara Sri Krishnadevaraya University, Ballari, 583105, Karnataka, India

2. Department of Mathematics, University of Central Florida, Orlando, FL, 32816, USA

3. Department of Mathematics, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, 560064, Karnataka, India

Abstract

Peristaltic nanofluid’s flow due to the enhanced thermal performances of nanoparticles and their importance in many sectors play a vital role in medicine, cosmetics, manufacturing, and engineering processes. In this regard, the current theoretical work examines the swimming behavior of migratory gyrotactic microorganisms in a non- Newtonian blood-based nanofluid that is subjected to a magnetic field. The addition of motile microorganisms improves heat and mass transmission by stabilizing the nanoparticle suspension created by the combined actions of buoyancy force and magnetic field. This fluid pattern may display both Newtonian and non-Newtonian fluid properties. Continuity, temperature, motile microbe, momentum, and concentration equations are used in the mathematical formulation. The series solutions are found using the perturbation technique, and the leading parameters are described using graphs. Further, the impact of various physical constraints on different physiological quantities is addressed and illustrated through graphs and is pondered in detail. Bioconvection reduces the density of gyrotactic bacteria, according to the findings. Such findings are beneficial to biomedical sciences and engineering. Microorganisms are helpful in the breakdown of organic matter, the production of oxygen, and the maintenance of human health.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3