Peristaltic flow of bioconvective Ree–Eyring nanofluid through an inclined elastic channel with partial slip effects

Author:

Ajithkumar M.1ORCID,Lakshminarayana P.1ORCID,Vajravelu K.2ORCID

Affiliation:

1. Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology 1 , Vellore 632014, India

2. Department of Mathematics, University of Central Florida 2 , Orlando, Florida 32816-1364, USA

Abstract

Pharmaceutical fluid processing is a procedure of medication manufacturing, utilizing a particular kind of heat transfer in a biofluid designed to maintain the desired temperature for extended periods. Choosing a suitable fluid can have a positive effect on the operating efficacy of the system and lengthen the fluid’s and system’s life spans. As an outcome of this development, we investigate the influence of the partial slip and gyrotactic microorganisms on the peristaltic transport of a magnetohydrodynamic Ree–Eyring nanofluid via an aligned porous conduit with thermal radiation, energy generation, along with cross and double diffusion effects. By invoking suitable nondimensional parameters, the proposed dimensional governing equations are transformed into a system of dimensionless partial differential equations. The analytical solutions for the system of partial differential equations are obtained by incorporating the homotopy perturbation method. Further, tabular and graphical presentations are used to examine the characteristics of the various sundry parameters on the temperature, concentration, motile microorganism density, axial velocity, trapping, and other relevant flow quantities. The observations of this study indicate that the Darcy number and thermal Grashof number have the capability to enhance the velocity distribution of the Ree–Eyring nanofluid in the presence of bioconvection. The trapped bolus size and the skin friction coefficient increase noticeably because of an enhancement in the Ree–Eyring fluid parameter. Also, the Darcy number and the Hall current parameter increase the skin friction coefficient. Furthermore, validation of the results is carried out to examine the consistency between the current and the previous findings for some special cases and excellent agreements are found.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3