Study of Heat and Mass Transfer in a Rotating Nanofluid Layer Under Gravity Modulation

Author:

Manjula S. H.1,Kiran Palle2,Gaikwad S. N.3

Affiliation:

1. Department of Mathematics (S and H) Vignan’s Foundation for Science, Technology & Research (VFSTR) Vadlamudi, Guntur 522213, Andhra Pradesh, India

2. Department of Mathematics Chaitanya Bharathi Institute of Technology Hyderabad 500075, Telangana, India

3. Department of Mathematics, Gulbarga University, Kalaburagi 585106, Karanataka, India

Abstract

In this paper we investigate the effect of gravity modulation and rotation on thermal instability in a horizontal layer of a nanofluid. Finite amplitudes have been derived using the minimal Fourier series expressions of physical variables in the presence of modulation and slow time. Here we incorporates the layer of nanofluid with effect of Brownian motion along with thermophoresis. Heat and mass transfer are evaluated in terms of finite amplitudes and calculated by Nusselt numbers for fluid and concentration. It is found that, gravity modulation and rotation can be used effectively to regulate heat and mass transfer. This modulation can be easily felt by shaking the layer vertically with sinusoidal manner. The numerical results are obtained for amplitude of modulation and presented graphically. It is found that rotation and frequency of modulation delays the rate of heat and mass transfer. This shows that a stabilizing nature of gravity modulation and rotation against a non rotating system. A comparison made between modulated and unmodulated and found that modulated system influence the stability problem than un modulated system. Similarly modulated system transfer more heat mass transfer than unmodulated case. Finally we have drawn streamlines and nanoparticle isotherms to show the convective phenomenon.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3