Abstract
This paper presents a synthesis of magnetic nanoparticles of samarium cobalt alloys and the use of iron oxide as a coating layer to prevent the rapid oxidation of as-made Sm–Co nanoparticles. The colloidal nanoparticles of Sm–Co alloys were made in octyl ether using samarium
acetylacetonate and dicobalt octacarbonyl as precursors in a mixture of 1,2-hexadecanediol, oleic acid, and trioctylphosphine oxide (TOPO). Such Sm–Co nanoparticle could be readily oxidized by air and formed a CoO antiferromagnetic layer. Exchange biasing was observed for the surface
oxidized nanoparticles. In situ thermal decomposition of iron pentacarbonyl was used to create iron oxide shells on the Sm–Co nanoparticles. The iron oxide shell could prevent Sm–Co nanoparticles from rapid oxidation upon the exposure to air at ambient conditions.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献