Author:
Ng C. Y.,Chen T. P.,Wong J. I.,Yang M.,Khor T. S.,New C. L.,Li C. M.,Trigg A. D.,Li S.
Abstract
Non-volatile memory devices based on silicon nanocrystal synthesized with very low energy Si+ implantation are fabricated. Memory performance under various programming mechanisms including Fowler-Nordheim (FN), drain-bias channel-hot-electron (DCHE), and source-bias channel-hot-electron
(SCHE) has been investigated. It is observed that the DCHE yields the largest memory window among the three programming mechanisms. The DCHE and SCHE have similar endurance characteristics, but the SCHE has a longer retention time than the DCHE. Both the DCHE and SCHE have a larger memory
window, a better endurance and a longer retention time as compared to the FN. Explanations to the phenomena are given.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献