Protective Effects of Indole-3-Carbinol-Loaded Poly(lactic-co-glycolic acid) Nanoparticles Against Glutamate-Induced Neurotoxicity

Author:

Jeong Ji Heun,Kim Jwa-Jin,Bak Dong Ho,Yu Kwang Sik,Lee Je Hun,Lee Nam Seob,Jeong Young Gil,Kim Do Kyung,Kim Dong-Kwan,Han Seung-Yun

Abstract

Indole-3-carbinol (I3C) has anti-oxidant and anti-inflammatory properties. Nonetheless, the potential of I3C to treat neurodegenerative diseases remains unclear because of its poor ability to penetrate the blood-brain barrier (BBB). Because polymer-based drug delivery systems stabilized by surfactants have been intensively utilized as a strategy to cross the blood-brain barrier, we prepared I3C-loaded poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) that were stabilized by Tween 80 (T80) (I3C-PLGA-T80-NPs) and examined their neuroprotective potential in vitro. We prepared I3C-PLGA-T80-NPs with an oil-in-water (o/w) emulsion solvent evaporation technique and confirmed their successful synthesis with both transmission electron microscopy and Fourier transform-infrared spectroscopy. I3C-PLGA-T80-NPs were then used to treat PC12 neuronal cells injured by glutamate excitotoxicity (GE) and examined the resulting survival rates compared with PC12 cells treated with I3C only. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay revealed higher survival rates in I3C-PLGA-T80-NPs-treated cells after GE injury compared with those treated with I3C only. Furthermore, I3C-PLGA-T80-NPs decreased the levels of reactive oxygen species (ROS) and apoptosis-related enzymes (Caspase-3 and -8) in GE-damaged neuronal cells. Taken together, I3C-PLGA-T80-NPs might possess neuroprotective effects against GE through ROS scavenging and subsequent apoptosis blockage.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3