Author:
Dong Pingshuan,Wang Honglei,Xing Shiying,Yang Xuming,Wang Shaoxin,Li Daolin,Zhao Di
Abstract
Doxorubicin (DOX) is a widely used and effective anticancer drug. However, it shows high cardiotoxicity in several patients. The exact biological mechanisms of DOX-induced cardiotoxicity remain unclear. In the present study, we developed and assessed novel injectable hydrogel matrices
combined with nanoparticles and secretome biomolecules to reduce DOXinduced cytotoxicity in human stem cell-derived cardiomyocytes. A Fe2O3 nanoparticle-loaded biocompatible silk sericin nanocomposite form was fabricated and used as an injectable carrier for secretome
for in vivo cardiomyocyte metabolism. The formulated hydrogels carrying secretome were analyzed in vitro for proliferation, migration, and tube formation of human stem cell-derived cardiomyocytes. Biological analyses revealed that the secretome-encapsulated florescent Fe3O2
Silk sericin (Sec@MSS) hydrogel markedly reduced calcein-PI dual staining in cardiomyocytes, revealing significantly induced apoptosis. Furthermore, we evaluated the mitochondrial membrane potential for DOX and Sec@MSS hydrogel, and demonstrated apoptosis of the cardiomyocytes in the DOX-alone
and Sec@MSS groups. However, the cardiotoxicity of Sec@MSS sericin was much lower than that in the DOX group, and was further evaluated via VEGFR and TUNEL analyses. The results indicate that Sec@MSS hydrogel might serve as an effective treatment agent in cardiac diseases in the future.
Publisher
American Scientific Publishers
Subject
Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献