Transcriptome Analysis of the Molecular Mechanism of Bacteriocin Synthesis in Lactobacillus plantarum KLDS1.0391 Under Nanoparticle NaCl Stress

Author:

Zhao Le,Zhao Penghao,Shang Jiacui,Meng Xiangchen

Abstract

Lactobacillus plantarum is an important industrial lactic acid bacteria, which can be used as a starter culture for fermented milk and meat products. Many Lactobacillus plantarum strains can produce bacteriocins with broad-spectrum antibacterial properties, heat stability, and easy to be hydrolyzed by protease in the process of food fermentation and metabolism, and their potential as biopreservative starter culture in the preservation of fermented food has been recognized. However, the high salt environment in the food matrix can affect bacteriocin production. Hence, the objective of this research is to reveal how salt stress affects the production of bacteriocin and the expression of related genes in this strain by transcriptome sequencing and to further analyze possible regulatory mechanisms, to provide references for the use of bacteriocin as a natural biological preservative in salt-containing foods. The number of viable counts and the antibacterial activity of bacteriocin over the whole growth stages were determined under the stress of 0%, 2%, 3%, 4%, and 6% NaCl. When the strain was cultured at low nanoparticle NaCl concentration (2% or 3%), the growth of the experimental group had no significant difference compared with the control group; however, bacteriocin antibacterial activity increased significantly in the stable phase. When the target strain was cultured under 2% NaCl stress for 24 h, the antimicrobial activity reached the maximum. Subsequently, based on the transcriptome sequencing results obtained by Illumina HiSEq 2500 sequencing system, the differentially expressed genes under 0% and 2% NaCl stress were compared, and the enrichment pathways of these genes were analyzed. A total of 260 genes displayed significant differential expression induced by NaCl: Among them, 159 genes were significantly up-regulated, and 101 genes were down-regulated. Bioinformatic analysis revealed that differentially expressed genes related to bacteriocin synthesis were mainly enriched in bacterial secretion pathway, amino acid synthesis pathway, proteolytic enzyme regulation pathway, purine metabolism pathway, two-component reg- ulation pathway, etc. It is preliminarily speculated that nanoparticle NaCl stress can regulate the synthesis and release of bacteriocin by affecting the expression of secY and ftsY in the cell membrane secretion pathway. We also speculate that nanoparticle NaCl stress can provide raw materials for bacteriocin by affecting the expression levels of genes hisH, cysE, cysM, metB, metA, lysA, and argH in the amino acid synthesis pathway. In addition, our research signified that the expression levels of sat and rpoB in the purine metabolism pathway were up-regulated under nanoparticle NaCl stress, which is beneficial to provide energy for bacteriocin production. The results will be helpful to understand how salt stress regulates bacteriocin synthesis of Lactobacillus plantarum. Furthermore, this study also provides guidance for using bacteriocin-producing strains as biocontrol bacteria in the salt-containing food matrix.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3