The Effect of Bone Morphogenetic Protein 2 (BMP-2)/Estrogen Composite Nanoparticles on the Differentiation Function of Osteoporotic Bone Marrow Mesenchymal Stem Cells (BMSCs)

Author:

Ding Shengdi1,Xing Shitong2,Zhang Zhanfeng2,Sun Zhenguo2,Dou Xiaojie2,He Yu shou2,Tang Huibin2,Weng Wei2

Affiliation:

1. Department of Gynecology, Huzhou Cent Hosp, Affiliated Cent Hosp HuZhou University, Huzhou, Zhejiang Province, 313000, China

2. Department of Orthopedics, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, 313000, China

Abstract

The menopausal hormone abnormal changes such as estrogen deficiency and increased FSH secretion in female patients in old age may cause osteoporosis which is plagued by patients. The pathogenesis of osteoporosis is not yet fully understood. BMP in the transforming growth factor-β superfamily is a key member in the process of bone growth and development, among which BMP-2 exerts critical roles. Impaired osteogenic differentiation of bone marrow mesenchymal stem cells (BMSC) contributes to the progress of osteoporosis. BMSC plays an indispensable role in treating osteoporosis and can develop into different directions through induction. As the regenerative medicine nanotechnology has become a new medical method, it is believed that BMSC can be used to treat osteoporosis and other related diseases. Our study analyzed the effects of BMP-2/estrogen composite nanoparticles on the proliferation and differentiation of osteoporotic BMSC cells to provide a reliable reference for the future treatment. Our results showed that BMP-2/estrogen composite nanoparticles promoted BMSC cell proliferation, increased ALP activity, decreased apoptosis rate, increased the expression of Col-1, Runx2 and Osterix, upregulated the osteogenic marker BMP-2. As confirmed by Alizarin Red staining, it could differentiate into osteoblasts and the content of Trap was decreased. In conclusion, our study confirms that BMP-2/estrogen composite nanoparticles can promote BMSC cell proliferation, osteogenic differentiation, and inhibit osteoclast differentiation, thereby providing new treatments and theoretical reference basis for treating osteoporosis.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3