Introducing Serine as Cardiovascular Disease Biomarker Candidate via Pathway Analysis

Author:

Rezaei Tavirani MostafaORCID,Zamanian Azodi MonaORCID,Rostami-Nejad MohammadORCID,Morravej Hamideh,Razzaghi Zahra,Okhovatian Farshad,Rezaei-Tavirani Majid

Abstract

Background: The rate of death due to cardiovascular disease (CVD) is growing. Investigations about CVD that leading to introduce varieties of metabolites is available. The monitoring of these metabolites to find effective ones in the future of clinic applications is the main aim of this study. Materials and Methods: Numbers of 34 metabolites for the CVD are extracted from literature and designated for interaction determinations by MetScape V 3.1.3. The compound-reaction-enzyme-gene network was constructed and the pathways were analyzed. Based on the presence of metabolites in the pathways the critical compounds were determined. Results: Pathway analysis revealed 18 disturbed pathways related to the CVD.  glycerophospholipid metabolism pathway including 27 compounds is related to the 9 queried metabolites. L-Serine which was communed between 5 pathways and also was presented in the largest pathway was identified as the critical compound. Conclusion: It can be concluded that L-Serine is a proper biomarker candidate for CVD diagnosis and also patients follow up approaches. [GMJ.2020;9:e1696]

Publisher

Salvia Medical Sciences Ltd

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3