Gene Ontology Assessment of Indirect Cold Physical Plasma and UV-Radiation Molecular Mechanism at the Cellular Level

Author:

Razzaghi Zahra1ORCID,Arjmand Babak23,Hamzeloo-Moghadam Maryam4,Rezaei Tavirani Mostafa5ORCID

Affiliation:

1. Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2. Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran

3. Iranian Cancer Control Center (MACSA), Tehran, Iran

4. Traditional Medicine and Materia Medica Research Center, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

5. Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Introduction: The development of therapeutic methods implies an understanding of the molecular mechanism of the applied methods. Due to the widespread use of UV radiation and cold physical plasma in medicine, the molecular mechanism of these two methods is compared via gene ontology. Methods: Data were derived from Gene Expression Omnibus (GEO). The differentially expressed genes (DEGs) which discriminate the cells treated with UV radiation versus indirect cold physical plasma were analyzed via gen ontology enrichment. The related biochemical pathways were extracted from the "Kyoto Encyclopedia of Genes and Genomes" (KEGG). Results: Among the 152 queried DEGs, 18 critical genes including SOC1, LDLR, ALO5, PTGS2, TNF, JUNB, TNFRSF1A, CD40, SMAD7, ID1, SMAD6, SERPINE1, PMAIP1, MDM2, CREB5, GADD45A, E2F3, and ETV5 were highlighted as the genes that victimize the two methods. Conclusion: NOTCH1 and TNF as the main genes plus SEREPINE1, KLF, and BDNF were introduced as the significant genes that are involved in the processes which discriminate cold physical plasma administration and UV-radiation as the two evaluated therapeutic methods.

Publisher

Maad Rayan Publishing Company

Subject

Urology,Nephrology,Dermatology,Dentistry (miscellaneous),Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3