Publisher
Hiroshima University - Department of Mathematics
Subject
Geometry and Topology,Algebra and Number Theory,Analysis
Reference7 articles.
1. [1] L. Erbe, Oscillation, nonoscillation and asymptotic behaviour for third order nonlinear differential equations, Ann. Mat. Pura Appl., 110 (1976), 373-391.
2. [2] J. W. Heidel, Qualitative behaviour of solutions of a third order nonlinear differential equations, Pacific J. Math., 27 (1968), 507-526.
3. [3] A. G. Kartsatos, The oscillation of a forced equation implies the oscillation of the unforced equation--small forcings, J. Math. Anal. Appl., 76 (1980), 98-106.
4. [4] A. G. Kartsatos and W. A. Kosmala, The behaviour of an nth-order equation with two middle terms, J. Math. Anal. Appl., 88 (1982), 642-664.
5. [5] W. A. Kosmala, Properties of solutions of the higher order differential equations, Diff. Eq. Appl., 2 (1989), 29-34.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. More on oscillation ofnth-order equations;Georgian Mathematical Journal;1995-11