More on oscillation ofnth-order equations
-
Published:1995-11
Issue:6
Volume:2
Page:593-602
-
ISSN:1072-947X
-
Container-title:Georgian Mathematical Journal
-
language:en
-
Short-container-title:Georgian Mathematical Journal
Author:
Kosmala Witold A. J.
Publisher
Walter de Gruyter GmbH
Subject
General Mathematics
Reference8 articles.
1. L. Erbe, Oscillation, nonoscillation, and asymptotic behaviour for third-order nonlinear differential equations.Ann. Mat. Pura Appl. 110(1976), 373–391.
2. J. W. Heidel, Qualitative behaviour of solutions of a third-order nonlinear differential equation.Pacific J. Math. 27(1968), 507–526.
3. A. G. Kartsatos, The oscillation of a forced equation implies the oscillation of the unforced equation—small forcing.J. Math. Anal. Appl. 76(1980), 98–106.
4. A. G. Kartsatos and W. A. Kosmala, The behaviour of annth-order equation with two middle terms.J. Math. Anal. Appl. 88(1982), 642–664.
5. W. A. Kosmala, Properties of solutions of higher-order differential equations.Diff. Eq. Appl. 2 (1989), 29–34.