A Fuzzy Inference System in Constructional Engineering Projects to Evaluate the Design Codes for RC Buildings

Author:

Kamgar RezaORCID,Hatefi Sayyed Morteza,Majidi Noorollah

Abstract

Economical design of a building is one of the main aims that should be followed because of its importance in constructional projects. In order to have an economical design, longitudinal reinforcing bars in the reinforced concrete members are among those parts of the structure that can be designed economically. The application of fuzzy inference systems provides an effective tools to handle the uncertainties and subjectivities arising in the designing process of buildings. Therefore, the main purpose of this paper is to propose a fuzzy inference system to evaluate the building design codes from an economical point of view. For this purpose, after designing the mentioned fuzzy inference system, three examples of three-dimensional concrete buildings are analyzed and designed using different codes. For all these codes, the structural properties of concrete buildings, the gravity and the seismic loads are considered to be the same. Finally, it finds that the fuzzy logic theory is an effective and practical tool to compute a value that shows the distance between the designed building and the economically designed building. Also, it concludes that between the studied codes, (EUROCODE 2-1992, Hong Kong CP-04, CSA A23.3-04 and ACI 318-05), the ACI 318-05 and Hong Kong CP04 codes lead to a more economical design for taller buildings. For low-rise buildings, the CSA A23.3-04 and ACI 318-05 codes lead to an economical design. Also, the EUROCODE 2-1992 has a minimum value for the economical design of all the considered buildings.

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3