Economic Evaluation Method of Modern Power Transmission System Based on Improved Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Best-Worst Method-Anti-Entropy Weight

Author:

Zeng Wenhui1,Fan Jiayuan2,Ren Zhichao1,Liu Xiaoyu1,Lv Shuang3,Cao Yuqian4,Xu Xiao4,Liu Junyong4

Affiliation:

1. State Grid Sichuan Economic Research Institute, Chengdu 610095, China

2. State Grid Sichuan Information & Communication Company, Chengdu 610299, China

3. State Grid Sichuan Electric Power Company Chengdu Power Supply, Chengdu 610041, China

4. School of Electrical Engineering, Sichuan University, Chengdu 610017, China

Abstract

As the demand for power supply increases, the investment in the power transmission system constantly increases. An accurate economic evaluation of the power transmission system is essential for future investment decisions and management. Applying a single method in economic evaluation leads to excessive subjective consciousness and unreasonable weight allocation. The Euclidean distance in the traditional TOPSIS method only partially works on the condition that the criteria are linearly correlated. To solve these problems, an economic evaluation method based on improved TOPSIS and BWM-anti-entropy weight is proposed. For the assignment of weights, the method retains the advantages of subjective and objective weighting methods based on the Nash equilibrium, breaks through the limitation of utilizing a single method, which contributes to one-sided results, and enhances the scientific rigor and rationality of the comprehensive weighting process. Furthermore, based on comprehensive weights, the method improves the TOPSIS by introducing the Mahalanobis distance and Pearson correlation coefficients, which can eliminate the influence of linear correlation. Finally, ten 500 kV transmission and transformation projects are analyzed and ranked to verify the method’s feasibility. Empirical analysis shows that the method can effectively evaluate the economic benefits of the power transmission system.

Funder

Science and Technology Project of State Grid Sichuan Electric Power Company

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3