A Proposal Model for Estimation of Project Success in Terms of Radial Based Neural Networks: A Case Study in Iran

Author:

Asgari Mahdi,Kheyroddin Ali,Naderpour Hosein

Abstract

For improving the conditions of project intended purpose and reaching high score in the project success, project Stakeholders (including employer, contractor, consultant and its users) try to comply with the implementation of project Critical Success Factors(CSFs) at the beginning of each project. This implementation is in two terms: economic and executive. Artificial neural networks are one of the new methods which have been developed to estimate and predict parameters by using inherent relationship among data. In this research, it tried to propose a model to determine the project success score by using radial basis neural networks. For reaching this purpose, firstly, the key indicators of project success (employer, contractor and consultant) among the main elements involved in the industry of macro-civil construction projects in Iran reviewed. Secondly, ten CSFs key project success indicators were recognized in five categories: (i) financial, (ii) interaction processes, (iii) manpower, (iv) contract settings and (v) characteristic nature of the project (based on conditions of the present research in Iran). Then, some projects were selected by random sampling of projects operated during the last 5 years in the country's Ministry of Energy. Among those projects, project information was collected by managers of large projects. After training the designed neural network, the project success model was provided based on an assessment of project objectives including factors of Scope, Time, Cost, and Quality of the projects. For facilitating other researches’ use, the applied equation of the model was presented as well. Outputs, calculated by the proposed model, were in good agreement with the actual number of projects assessed in Iran. The results of this study may be used as a tool in implementing projects for the rapid assessment of achieving project goals’ facilities.

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3