Hybrid approach for cost estimation of sustainable building projects using artificial neural networks

Author:

Al-Somaydaii Jumaa A.1,Albadri Aminah T.2,Al-Zwainy Faiq M. S.3

Affiliation:

1. College of Engineering, University of Anbar , Ramadi , Iraq

2. College of Engineering, Al-Nahrain University , Jadriya , Baghdad , Iraq

3. Forensic DNA Center for Research and Training, Al-Nahrain University , Jadriya , Baghdad , Iraq

Abstract

Abstract Inaccurate estimation in sustainable construction projects is a significant challenge for appraisers, particularly when data and knowledge about the projects are lacking. As a result, there is a need to use cutting-edge technology to solve the issue of estimation inaccuracy. Iraq’s productivity estimates are now made using outdated, ineffective methodologies and procedures. In addition, it is essential to implement cutting-edge, quick, precise, and adaptable technology for productivity estimation. This study’s major goal is to calculate the overall costs of sustainable buildings using the cutting-edge technique known as artificial neural networks (ANNs). For Iraq’s construction industry to handle projects successfully, ANNs must be used as a new technology, a methodology developed to estimate the overall costs of sustainable construction projects. In this study, the process of cost estimation was modeled using ANNs. Investigations of a number of examples involving the creation of ANNs have also been made, including network design and internal elements and how much they impact the effectiveness of models built using ANNs. Equations were developed to determine structural productivity. These networks were shown to have extremely strong predictive power for both accounting coefficients (R) (93.33%) and the overall costs of sustainable construction projects, with a prediction accuracy of 87.00 and 93.33%, respectively.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3