Estimation of Soil Moisture for Different Crops Using SAR Polarimetric Data

Author:

Kanmani K.,P. Vasanthi,Pari Packirisamy,Ahamed N. S. Shafeer

Abstract

Soil moisture is an essential factor that influences agricultural productivity and hydrological processes. Soil moisture estimation using field detection methods takes time and is challenging. However, using Remote Sensing (RS) and Geographic Information System (GIS) technology, soil moisture parameters become easier to detect. In microwave remote sensing, synthetic aperture radar (SAR) data helps to retrieve soil moisture from more considerable depths because of its high penetration capability and the illumination power of its light source. This study aims to process the SAR Sentinel-1A data and estimate soil moisture using the Water Cloud Model (WCM). Many physical and empirical models have been developed to determine soil moisture from microwave remote sensing platforms. However, the Water Cloud Model gives more accurate results. In this study, the WCM model is used for mixed crop types. The experimental soil moisture was determined from in-situ soil samples collected from various agricultural areas. The soil backscattering values corresponding to the different soil sampling locations were derived from Sentinel SAR data. Using linear regression analysis, the laboratory's soil moisture results and soil backscattering values were correlated to arrive at a model. The model was validated using a secondary set of in-situ moisture content values taken during the same period. The R2 and RMSE of the model were observed to be 0.825 and 0.0274, respectively, proving a strong correlation between the experimental soil moisture and satellite-derived soil moisture for mixed crop field types. This paper explains the methodology for arriving at a model for soil moisture estimation. This model helps to recommend suitable crop types in large, complex areas based on predicted moisture content. Doi: 10.28991/CEJ-2023-09-06-08 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3